Чем так хороши гибкие солнечные панели?

Особенности гибких солнечных модулей и их применение

Гибкие солнечные панели (они же – «тонкопленочные») становятся все более востребованными в бытовой сфере. Если раньше их использовали главным образом на крупных гелиостанциях или в аэрокосмической отрасли, то сегодня они все чаще применяются и в повседневной жизни.

  • Гибкие панели встраивают в различные архитектурные элементы и рекламные сооружения, а также используют в качестве складных мобильных источников энергии.
  • Более того, тонкопленочные фотобатареи даже нашивают на одежду и снаряжение. К примеру, для туристов выпускают специальные модели походных рюкзаков, снабженных гибкими батареями.
  • А последние разработки в этой сфере позволили создать тонкопленочные модели, которые можно использовать и для тонировки стекол.
  • То есть при помощи «солнечной пленки» любое окно легко превратить в полноценный источник питания.
  • Проводились и другие интересные эксперименты. Например, по созданию так называемых «фотоштор».

Нашитые на ткань гибкие солнечные модули не только вырабатывают энергию, но и надежно защищают комнату от избытка солнечных лучей. Тем самым обеспечивается прохлада и комфортный микроклимат в помещении.

Что такое «гибкая солнечная панель»

По сути, такая панель представляет собой слой полупроводника, напыленный на тонкую гибкую подложку. Толщина современных готовых панелей минимальна (не более 1 мкм), а их производительность лишь немного уступает КПД привычных кристаллических образцов.

Ранее тонкопленочные батареи изготавливали лишь на основе аморфного кремния, но сейчас все больше используют кадмия теллуриды/сульфиды, диселениды медно-индиевые и медно-галлиевые, а также некоторые полимерные вещества. Для повышения энергоэффективности применяются и многослойные (многокаскадные) полупроводниковые структуры, в которых свет отражается и преобразуется несколько раз.

Что же касается отличительных свойств гибких гелиомодулей, то можно выделить следующие:

  • Гибкость структуры и возможность использования на криволинейных и цилиндрических поверхностях;
  • Сохранение производительности при облачной погоде, как следствие – высокая общая энерговыработка;
  • Особая эффективность в жарком климате;
  • Довольно высокая степень оптического поглощения солнечного спектра, благодаря чему энергия солнца «улавливается» более полно;
  • Эффективная работа в мощных гелиокомплексах. Именно поэтому изначально такие панели применяли в основном на крупных солнечных станциях.

Кроме того, производство гибких солнечных панелей обходится дешевле их кристаллических аналогов. Это означает, что и итоговая цена таких изделий также несколько ниже.

У тонкопленочных батарей есть только одна негативная особенность – более обширная (примерно в 2 раза) площадь поверхности по сравнению с кристаллическими вариантами той же мощности.

Особенности использования

Гибкие фотомодули применяют и в быту, и в промышленной сфере. Причем их особые рабочие свойства накладывают свои ограничения и на специфику использования.

В быту

Чаще всего солнечные батареи на гибких фотоэлементах используют при архитектурной отделке зданий и в малых архитектурных формах. Такие панели встраивают в крыши и окна, заключают в стеклянные триплексы и полимерные короба.

Кроме того, так как гибкие фотобатареи очень легкие, то именно их используют в тех случаях, когда критичную роль играет вес. Электросамолеты, электролодки и электромобили, аэростатные конструкции и т.д., — во всех этих случаях тонкие гелиопанели гораздо предпочтительнее и эффективнее кристаллических вариантов.

Также гибкие батареи применяют на солнечных станциях, то есть в случаях, когда не имеет значения их более обширная площадь. Особенно хорошо эти батареи зарекомендовали себя в регионах с пасмурной погодой или жарким климатом.

В космосе

Ведутся и активные разработки по использованию тонкопленочных панелей в космической отрасли. Так, на российском предприятии НПП «Квант» разрабатывается направление по созданию гибких фотопанелей для космических станций

Основное внимание при этом уделяется трехкаскадным батареям на базе аморфного кремния

Такие батареи отличаются гораздо более высокими (в 4-5 раз) энергомассовыми характеристиками по сравнению с кристаллическими аналогами (несмотря на несколько меньший КПД).

Кроме того, они гораздо более стойки к радиационному излучению, а их стоимость существенно ниже. Еще один весьма важный фактор – небольшой транспортный (стартовый) объем гибких модулей и возможность изготовления на их основе легко развертываемых конструкций.

Аморфные кремниевые батареи

Изготавливаются из аморфного (некристаллического) кремния a-Si, путем осаждения на гибкую подложку паров гидрида кремния. В результате образуется добиться стабильного фотоэлектрического эффекта получается уже при толщине пленки в несколько микрон.

Эффективность преобразования составляет порядка 8-11%, стоимость генерации лежит в пределах 0.5-0.7% за 1 Вт. Главный недостаток таких батарей – низкий КПД преобразования, что требует значительной площади для обеспечения необходимой мощности. Однако он с лихвой компенсируется возможностью установки на любые поверхности – гибкая подложка не требует ровных оснований и специальных конструкций для монтажа.

Кроме того, современные полиморфные модули могут работать с инфракрасным диапазоном, что существенно уменьшает потери эффективности при рассеянном освещении. В результате на долю аморфных элементов сегодня приходится порядка 10% мирового рынка.

Инвертор

Способы подключения солнечных батарей могут быть разными, но подбор параметров частей системы имеет общие принципы. Рассмотрим, как подобрать инвертор для СЭС разных типов.

Электростанция полностью автономного типа. Такая система не подключена к сети Энергосбыта (внешней магистрали), пользователь получает все электричество только от панелей. Подойдет инвертор off-grid. Эти автономные модели могут быть одно и трехфазными, способны преобразовывать постоянный токи разного вольтажа 12, 24, 48, 96 В и выше. Данные изделия самые дешевые (25–600 долл.), но это не означает их неэффективность — для не особо требовательной сборки указанного типа они подойдут, нет смысла брать более дорогие изделия, так как их потенциал не будет использоваться.

Схема с подключением к центральной сети. СЭС работает как автономно, так и совместно с главной магистралью. Но без аккумуляторов. Тут подойдет инвертор on-grid:

  • регулирует забор электричества, но не из АКБ, а из сети Энергосбыта, если модули не выдают достаточного его количества;
  • отправляет излишки продуцируемой энергии в центральную сеть, например, для продажи «по зеленым тарифам».

Стоимость изделия on-grid 200–20 000 $. Зависит от мощности конкретной модели, например, для устройства на 3–6 кВт — 2000 $, на 1000 кВт — 15 000 $ и выше. Для дома хватит 5 кВт.

Аккумуляторно-сетевая СЭС — самый распространенный оптимальный тип: вырабатывается энергия для запитывания приборов дома, излишек накапливается в АКБ, которые отдают заряд ночью и/или когда модули не справляются с нагрузкой, а также в центральную сеть для продажи. Если система из-за возросших потребностей не справится с нагрузкой, то предполагается забор энергии из магистрали Энергосбыта. Для таких условий подойдет модель hybrid (с сетевыми функциями). Цена начинается с 500–600 $ и до около 20 000 $.

Иные параметры

Дальше кратко подбор инвертора по иным критериям, которые необходимо учесть перед тем, как подключить солнечную панель.

ПараметрОписание
МощностьЗависит от номинала по мощности СЭС, связанной со стороной от постоянного тока и максимумом нагрузки — от переменного.
Надо взять полное значение по мощности СЭС (допустимая погрешность 90–120%) и мощность всех приборов при их одновременном включении. Первая характеристика указана в ТД панелей, по второй считают не просто кВт, а совокупное пиковое (пусковое) значение, которое может превышать рабочее в 5–7 раз.
Из-за перегрузки во время запуска даже на 2–3 сек. инвертор не запустится.
По напряжениюРекомендованное соотношение (вольтаж/мощность СЭС):

  • 12 В /600 Вт;
  • 24 В/ 600…1500 Вт;
  • 48 В/ больше 1500 Вт.
КПДЭто малозначимый параметр — все современные изделия имеют 90–95% КПД. Энергопотребление прибора не должно быть большим 5–10% проходящей через него энергии.
Вес1 кг — 100 Вт.
Качественный прибор не может быть легким, так как чем он мощнее, тем больше трансформатор и его медные обмотки.
Меандровые, синусоидальные типы сигналаМеандр (прямоугольная форма) — дешевый, не защитит полностью от скачков напряжения. Плохо влияет на индуктивные нагрузки, например, на компрессор, насосы кондиционеры, стиралки. К нему ставят дополнительные стабилизаторы.
Чистая синусоида — дорогое изделие, колебания очень плавные, только такая модель рекомендована без оговорок для частного дома для запитывания перечисленных выше и всех других приборов.
Квазисинусоид — тут применен компромисс, грубо говоря, имитация чистой синусоиды, подойдет для таких же целей, как в предыдущем пункте, прибор менее качественный, но дешевле.
1 или 3 фазныйТрехфазный можно поставить и на 1 и на 3-фазную сеть. Однофазный — только на такую же систему.

Количество инверторов

Теоретически 1 прибора, если он подобран правильно под мощность, другие параметры, хватит для всей СЭС. Но при большом количестве пластин в нескольких линях желательно на каждую ставить свой инвертор. Причина в том, что нестабильность одной ветки (расположенность на чуть ниже освещаемой стороне) негативно влияет на общий инвертор, КПД понизится. А с отдельными такими устройствами этот недостаток нивелируется.

Хороший вариант — модель для нескольких отдельных MPPT входов (2– 4 и больше). Но цена такого оснащения часто неоправданно высокая.

Обзор модулей, не использующих кремний

Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.

Перечислим основные преимущества:

  1. Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
  2. Фотоэлементы стабильны даже при температурах до 150 °C.
  3. Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.

Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.

(г. Брянск)

Предприятие «Термотрон» производит автономные системы уличного освещения на солнечных батареях и мини-автономные солнечные станции. Первые поставляются на базе серийных модулей с высокой столбовой опорой.

Особенности автономных систем уличного освещения от «Термотрона»:

  • температурный диапазон эксплуатации – -40…+50 °C;
  • угол раскрытия луча – 135 на 90 градусов;
  • гарантированный срок работы – 12 лет в городских условиях;
  • высота опоры – от 6 до 11 м;
  • мощность – от 30 до 160 Вт.

Автономная станция «Экотерм», выпускаемая заводом, будет интересна владельцам загородных домов и участков. Ее применяют также на фермах, телефонных станциях, для оснащения сельских школ, больниц, магазинов. Станция работает от дизель-генератора 14,5 кВт. Цена вырабатываемой энергии при количестве 18 фотоперерабатывающих элементов – 5,12 руб./кВт, срок окупаемости – до 5 лет (цену станции уточнять у производителя).

ВариантМощность станции, кВтЕмкость АКБ, А/ч
«Экотерм-3» ЮКЛЯ.565216.00131 000
«Экотерм-5»51 500
«Экотерм-10»102 000
«Экотерм-15»153 000
«Экотерм-20»204 000
«Экотерм-25»255 000
«Экотерм-30»306 000
«Экотерм-35»357 000
«Экотерм-40»408 000
«Экотерм-50»5010 000

Устройство гибких солнечных панелей

Преобразование энергии солнца в электрическую люди изучили достаточно давно, но коммерческие образцы солнечных панелей появились на рынке только в последние годы. Ещё несколько десятилетий назад они использовались только в космонавтике или военной сфере. Сейчас выпущено множество устройств, которые функционируют от солнечной энергии. В качестве примера можно привести калькуляторы, аккумулятор для телефона с солнечной панелью, солнечная батарея для зарядки автомобильной АКБ, всевозможные водонагреватели и системы обогрева частных домов.

Самые первые солнечные батареи были тяжёлыми и крупногабаритными. Кроме того, у них был небольшой КПД. Но постепенно конструкция совершенствовалась, размеры уменьшались, а эффективность росла. Сейчас им уже не требуется максимальный солнечный свет для выработки электричества. Затем появились гибкие солнечные батареи, что стало существенным прорывом в области альтернативных источников энергии.

Гибкая панель – это полупроводниковый слой, который напылён на тонкую подложку. Современные образцы имеют толщину около 1 микрометра. При этом по производительности они примерно соответствуют обычным кристаллическим моделям. Первоначально такие батареи производились на базе аморфного кремния. Затем стали использовать:

  • диселениды медь-индий, медь-галлий;
  • теллуриды и сульфиды кадмия;
  • полимерные соединения.

Чтобы увеличить эффективность гибких панелей производители используют многослойную конструкцию. В таких полупроводниковых модулях происходит отражение света и его преобразование происходит несколько раз. Современные технологии позволяют выпускать достаточно износостойкие и прочные панели, которые имеют малую толщину и все. Такие солнечные батареи можно складывать, сгибать, сворачивать. Естественно, что это нужно делать «без фанатизма». На грубую силу они не рассчитаны, но поход или туристическую поездку переносят без проблем.

Какие характерные особенности имеют гибкие солнечные модули? Можно назвать следующие:

  • Есть возможность использования на криволинейной поверхности;
  • Вырабатывают электричество даже в облачную погоду. То есть, имеют высокую общую выработку энергии;
  • Эффективны в южных широтах;
  • Высокий уровень оптического поглощения лучей солнца. То есть, более полное усвоение и переработка солнечной энергии;
  • Хорошо работают в составе мощных гелиоустановок. По этой причине первоначально гибкие панели использовали на крупных гелиостанциях.

Стоит отметить и ещё один важный плюс гибких модулей. Они дешевле, чем кристаллические панели. Это положительно сказывается на конечной цене изделий из них. Не обходится и без недостатков. Гибкие батареи при одинаковой площади с кристаллическими моделями имеют в два большую площадь поверхности. А значит, занимают больше места при размещении.

Гибридная солнечная панель

Стоит отдельно сказать про такую разновидность солнечных панелей, как гибридные. Это название они получили за то, что умеют вырабатывать сразу два типа энергии, тепло и электричество.

Гибридные солнечные панели, ещё называемые PVT, являются соединением фотоэлектрической батареи и коллектора тепла. Этот симбиоз даёт возможность в 2 раза уменьшить площадь развёртывания системы из теплового коллектора и фотоэлектрических батарей на каком-нибудь здании.

Существенный плюс заключается в том, что гибридная панель имеет возможность отбирать избыточное тепло от фотоэлементов. Это обеспечивает теплоноситель в коллекторе. Именно нагрев фотоэлемента уменьшает эффективность преобразования солнечной энергии в электрическую. В случае гибридной батареи эта проблема частично решается.

На практике гибридные панели пока не получили широкого распространения. В настоящий момент они успешно используются в роли тепловых насосов, нагрева воды в бассейне, аккумулирования тепла скважины и т. п.

https://youtube.com/watch?v=t5Os8yisXI0

Это интересно: Как правильно паять светодиодную ленту — разбираемся детально

Обзор солнечных батарей для туристов

Так как альтернативные солнечные источники энергии с каждым годом становятся все более популярными, ассортимент этих изделий настолько широк, что понять, какие солнечные панели лучше брать для похода, без подсказок других людей попросту невозможно. Чтобы облегчить решение «головоломки», лучше привести примеры эффективного оборудования. Этот обзор солнечных батарей для туристов поможет будущим покупателям или сориентироваться, или найти «свою» модель.

Goal Zero Nomad 7

Это одна из самых популярных моделей на мировом рынке. Nomad 7 от Goal Zero оснащена монокристаллической панелью мощностью 7 Вт, она полностью герметична, потому не боится ни дождя, ни снега, ни падения в реку. Помимо порта USB (1 А, 5 В, 7 Вт) устройство имеет разъем для аккумуляторов (1,1 А, 6,5 В, 7 Вт) и коннектор, дающий возможность присоединить еще один подобный прибор. Батарея достаточно компактна даже в разложенном виде (38х229х432 мм), поэтому может использоваться в тесном пространстве.

Goal Zero Adventure Kit

Складная модель от того же производителя подходит для зарядки всех существующих гаджетов. В устройстве есть несколько выходов: USB, на 5 и 12 В. Мощность накопителя составляет 7 Вт, а рабочее напряжение 12 В, сила тока на USB-разъеме — 600-700 мА. В нижней части прибора находится индикаторный фонарик, который способен работать без зарядки 20 часов. Размеры устройства в закрытом состоянии — 25х150х230 мм, его вес — 362 г. Весь комплект заряжается на протяжении 4-5 часов.

SOLAR

Это многофункциональное мобильное устройство произведено в Китае, его можно использовать в любых неблагоприятных условиях: при температуре от -40° до +50°. Данный аппарат имеет серьезную мощность (около 10 Вт), ток зарядки составляет 800 мА. Размеры прибора — 4,5х224х450 мм, масса — 1 кг. Эта солнечная батарея универсальна, она подходит для зарядки любой техники: мобильных телефонов, портативных компьютеров и т. д. Минусы — высокая цена, вес, отсутствие дополнительного адаптера.

SCN-4/6

Еще один «поднебесный» представитель — аморфное кремниевое устройство от компании Sun-Charge. Его особенность — небольшой аккумулятор. Прибор имеет мощность 3,9 Вт, приемлемый вес (290 г) и очень эффектный дизайн. Размеры батареи — 10х195х200 мм. Недостаток — отсутствие надежной защиты от механических воздействий, поэтому эта солнечная батарея требует аккуратного обращения.

SOLARMONKEY ADVENTURER

Данный компактный прибор выпускается фирмой PowerTraveller. Устройство также используют для зарядки гаджетов через порт USB, есть переходник для Apple: модель имеет буферный аккумулятор, емкость которого составляет 2500 мА·ч, который полностью заряжается за 9 часов. В конструкции используются полисиликоновые элементы, их КПД составляет 17%. Габариты этой солнечной батареи — 22,75х96х170 мм, вес устройства — 265 г.

AcmePower AP-MF1918

Это еще один универсальный аккумулятор, идеальный для зарядки любой электроники — телефонов, плееров, навигаторов и т. д. Модель может выступать в роли осветительного прибора. Емкость аккумулятора составляет 1000 мА·ч, зарядный ток — 800 мА, рабочее напряжение — 5-6 В. Для полной зарядки солнечной батареи потребуется около 10 часов. Устройство имеет защиту от КЗ. Его вес 77 г, размеры — 16х57х123 мм. В комплект входит 5 переходников.

СЗУ2-БСА-7.5

Это российская модель, которая заслуженно завоевала место в этом списке. Такое зарядное универсальное устройство способно заряжать как портативное, мобильное оборудование, так и свинцовые аккумуляторы. Складная конструкция имеет завидную мощность (14Вт) и довольно большой вес — 1,1 кг, может работать при разных температурах: от -30 до +40°. Ее размеры в разложенном состоянии — 3х230х1640 мм.

Fuse

Эта солнечная батарея от компании Voltaic Systems предназначается для фиксации на рюкзаке. Время зарядки от солнечных лучей составляет 7 часов, 5,5 часа — от других источников (внешний аккумулятор, сеть). Сила тока — 1А, напряжение — 5,5 В, мощность 6 Вт, вес — 600 г. Батарея довольно компактна: ее размеры — 20х210х280 мм.

На что обращать внимание при выборе солнечных панелей

В связи с тем, что использование энергии Солнца в бытовых целях еще не стало привычным делом, и выбор солнечных панелей вызывает определенные сложности, предлагаем перечень наиболее важных параметров

Итак, при покупке такого модуля стоит обратить внимание на следующие пункты:. производитель

производитель.

Важно обратить внимание, как долго данный производитель представлен на рынке данного товара, и какой у него объем производства. Чем дольше производитель работает в этой отрасли, тем больше ему можно доверять

область использования.

Для каких целей будет использоваться полученная энергия: для зарядки мелкой техники, для электроснабжения крупных электроприборов, для освещения или для полноценного электроснабжения дома. Именно от того, для каких целей покупается солнечный модуль, зависит выбор выходного напряжение и мощности панелей.

напряжение.

Для мелких электроприборов достаточно 9 В, для зарядки смартфонов и ноутбуков – 12-19 В, а для обеспечения всей энергосистемы дома – 24 В и более.

мощность.

Данный параметр рассчитывается на основе среднесуточного энергопотребления (сумма потребляемой энергии всей техникой за день). Мощность солнечных панелей должна с некоторым запасом перекрывать потребление.

качество фотоэлектрических элементов.

Существует 4 категории качества фотоэлементов, из которых состоит солнечная панель: Grad A, Grad B, Grad C, Grad D. Естественно лучше всего первая категория – Grad A. Модули этой категории качества не имеют сколов и микротрещин, однородны по цвету и структуре, имеют набольший КПД и практически не подвержены деградации.

срок службы.

Срок службы солнечных панелей варьируется от 10 до 20 лет. Конечно, длительность полноценной работы такой энергосистемы зависит от качества батарей и правильности их установки.

дополнительные технические параметры.

Наиболее важными являются КПД, толеранс (допустимое отклонения по мощности), температурный коэффициент (влияние температуры на производительность батареи).

Разобравшись в основных технических характеристиках, предлагаем вам рейтинг лучших солнечных панелей в 2021 году.

Достоинства и недостатки в сравнении с жесткими модулями

Гибкие панели выигрывают у классических конкурентов практически по всем параметрам. Главными из них являются два наиболее важных достоинства 

1.Среднегодовая производительность.

Практически в любых регионах с количеством солнечных дней в году менее 300, тонкопленочные варианты оказываются эффективнее. Их КПД резко не «проседает» при рассеянном и падающем под большими углами свете. 

Они малочувствительны к температурам вплоть до 60-70°C, в то время как кремниевые модули при таком нагреве теряют около 20% генерации. Это сильно сокращает срок окупаемости СЭС на «пленочной» базе и делает вложения в покупку более выгодными.

2.Функциональность.

Благодаря эластичности и малому весу, гибкие батареи могут широко применяться там, где установка традиционных модулей невозможна. Ими можно покрывать изогнутые крыши теплиц, дугообразных остановок общественного и частного транспорта, дизайнерских зданий с нелинейной формой кровли. 

Тонкие пленки уже сегодня можно вставлять даже в одежду и обувь, чем часто пользуются модные дизайнеры. Кроме того, быстро набирает популярность комплектация гибкими панелями некоторых видов автомобилей и общественного транспорта. В Китае электробусы, питающиеся от тонкопленочных солнечных батарей, в нескольких небольших городах полностью вытеснили классический вид автобусов.

 Частично прозрачные модификации обладают еще более широкими возможностями. В перспективах самого ближайшего будущего – переход на энергосберегающие панорамные окна в офисах крупнейших компаний всех развитых стран мира.

Основных недостатков на сегодняшний день тоже два.

1.КПД при идеальной освещенности и цены.

Обратная ситуация складывается с гибкими батареями на редкоземельных элементах. КПД у CIGS выше, но стоимость настолько высока, что их использование пока целесообразно только в высокотехнологичных отраслях, где цена изделия не критична.

2.Проблема с утилизацией.

Все без исключения гибкие солнечные батареи являются экологически чистыми в процессе эксплуатации. Однако по завершении срока службы их утилизация обходится производителям в немалые суммы. Причина этого – в ядовитости теллура, галлия, кадмия, германия и прочих редкоземельных элементов, что требует применения дорогостоящих технологий при их захоронении.

Решить проблему кардинально поможет только переход на третье поколение панелей, созданных на основе безопасных природных минералов и органики.

Выбираем мощность солнечных панелей для туризма

Наиболее востребованными для пеших походов являются комплекты мощностью от 10 до 100 ватт. Меньшая производительность не сможет удовлетворить даже минимальные потребности туристов, а большая приведет к сложностям транспортировки.

Если рассмотреть средний показатель в 100 Вт, который допустим для обеих категорий, его производительность в светлое время суток составит:

  • 45-50 ватт в сутки с ноября по февраль, или 5-10 ватт ежечасно;
  • 200-240 ватт на протяжении дня в сезонных диапазонах март/апрель и сентябрь/октябрь, около 20-50 Вт/час;
  • 450-550 Вт/сут. в мае, июне, июле и на 15% ниже в августе.

Для понимания, как можно использовать солнечные панели для туризма такой производительности, приведем примерное потребление энергии наиболее важными на природе устройствами:

  • зарядка трех смартфонов / одного power bank – 9-12 Вт/час;
  • планшет – 12-13 Вт/час;
  • цифровая камера, фотоаппарат – до 15 Вт/час;
  • LED лампы для освещения кемпингов либо палаток – 5-8 Вт/час каждая, и т.д.

Методы увеличения реальной производительности

На природе выработка энергии Вашими панелями будет зависеть от ряда факторов. Чтобы «выжать» из мини-электростанции максимум, рекомендуется:

  • во время отдыха разворачивать рабочие поверхности панелей по возможности строго перпендикулярно распространению солнечного излучения;
  • применять для этого заводские или сделанные из подручных средств подставки;
  • не забывать изменять угол наклона фотоэлектрических модулей по мере смещения солнца;
  • не допускать падения на ячейки тени;
  • следить за чистотой защитной поверхности.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий