Защитное заземление: как правильно соорудить и подключить надежный защитный контур

Для электроустановок и распределительных устройств

Существует большое количество переносных приборов, предназначенных для защиты обслуживающего и оперативного персонала от поражения током в цепях с действующим напряжением до 1000 Вольт. При работе с электроустановками и распределительными устройствами (РУ) применяются специальные временные заземляющие комплекты, отличающиеся своей простотой, долговечностью и удобством применения. Для ознакомления с ними предлагаем рассмотреть рабочие характеристики некоторых из них.


Установка переносного заземления в распределительном устройстве

Заземления переносные линейные ЗПЛ подстанционные подобно обычным приспособлениям для временного соединения с землей состоят из фазных замыкающих струбцин, имеющихся на обоих концах медных проводников. Место куда следует присоединять в распределительных устройствах такие ПЗ, выбирается исходя из возможности создания надежного зацепления (контакта). Чаще всего – это фазные шинки подводящих линейных цепей или их ответвления на соседние распределительные шкафы.


Комплект переносного заземления из четырех заземлителей

На ПЗ для РУ имеются специальные рукоятки, предназначенные для защиты оператора от прикосновения с отключенными токоведущими частями электроустановок. По всем своим характеристикам они полностью соответствуют типовым заземляющим конструкциям. Также отметим, что для действующих установок с рабочим напряжением выше 1000 Вольт, переносные защитные приспособления накладываются на все предусмотренные в ней токоведущие провода. Защищенные с их помощью участки должны четко отделяться от токоведущих шин путем организации хорошо различимого разрыва. Он обычно обустраивается за счет выключателей, разъединителей или предохранителей, отключенное положение которых прекрасно видно с места проведения ремонтных работ.

Установка переносного заземления на выводах трансформатора

В соответствие с требованиями основных положений ТБ при наличии риска появления наведенного напряжения временное переносное заземление обязательно устанавливается в зонах всех работающих на участке бригад. В большинстве современных образцов РУ для наложения защитного заземления предусмотрены специальные места, присоединиться к которым удается без всяких усилий. Они маркируются черной краской, которую перед наложением струбцины следует тщательно удалить (до появления чистой стальной поверхности).

Монтаж ПЗ на вводе в трансформатор

Во всем остальном порядок подключения заземляющего устройства аналогичен уже рассмотренным ранее образцам. На довольно распространенный вопрос о том, кому разрешено устанавливать и снимать переносные заземления, существует однозначный ответ.

Для электроустановок с рабочим напряжением от 1000 Вольт и выше к проведению этих операций должно привлекаться несколько лиц. Одно из них назначается непосредственным производителем работ, а второе – наблюдающим, который должен иметь группу допуска не ниже 4-ой.

Перед началом оперативных переключений на участке, подлежащем заземлению, специалист 3 группы обязательно проходит инструктаж, а также тщательно изучает схему электроустановки и порядок предстоящих коммутаций. Все основные операции по подсоединению и отключению заземляющих элементов осуществляются тем же специалистом с 3-ей группой допуска.

Устройство заземления своими руками: поэтапная инструкция

Если Вы задаетесь вопросом: «как сделать заземление на даче?», то для выполнения данного процесса потребуется следующий инструмент:

  • сварочный аппарат или инвертер для сварки металлопроката и вывода контура на фундамент здания;
  • угловая шлифмашинка (болгарка) для разрезания металла на заданные куски;
  • гаечные глючи для болтов с гайками М12 или М14;
  • штыковая и подборная лопаты для рытья и закапывания траншей;
  • кувалда для вбивания электродов в землю;
  • перфоратор для разбивания камней, которые могут встречаться при рытье траншей.

Чтоб правильно и согласно нормативным требованиям выполнить контур заземления в частном доме нам потребуются следующие материалы:

  1. Уголок 50х50х5 — 9 м (3 отрезка по 3 метра).

2. Сталь полосовая 40х4 (толщина металла 4 мм и ширина изделия 40 мм) — 12 м в случае вывода одной точки заземлителя на фундамент здания. Если же Вы хотите выполнить контур заземления по всему фундаменту к указанному количеству добавьте общий периметр здания и еще возьмите запас для подрезки.

3. Болт М12 (М14) с 2 шайбами и 2-я гайками.

4. Медный заземлитель. Может быть использована заземляющая жила 3-х жильного кабеля либо провод ПВ-3 с сечением 6–10 мм².

После того как все необходимые материалы и инструменты есть в наличии можно переходить непосредственно к монтажным работам, которые детально расписаны в следующих главах.

Выбор места для монтажа контура заземления

В большинстве случаев рекомендуется монтировать контур заземления на расстоянии в 1 м от фундамента здания в месте где оно будет скрыто от человеческого глаза и к которому будет сложно добраться как людям, так и животным.

Такие меры необходимы для того, что при повреждении изоляции в электропроводке потенциал будет идти на контур заземления и может возникнуть шаговое напряжение, которое может привести к электротравме.

Выполнение земляных работ

После того как было выбрано место, выполнена разметка (под треугольник со сторонами 3 м), определено место вывода полосы с болтами на фундамент здания можно приступать к земляным работам.

Для этого необходимо с помощью штыковой лопаты по периметру размеченного треугольника со сторонами по 3 м снять слой земли в 30–50 см. Это необходимо для того, чтоб в дальнейшем без особых трудностей к заземлителям приварить полосовой металл.

Также стоит дополнительно прокопать траншею такой же глубины для подвода полосы к зданию и выводу ее на фасад.

Забивание заземлителей

После подготовки траншеи можно приступать к монтажу электродов контура заземления. Для этого предварительно с помощью болгарки необходимо заточить края уголка 50х50х5 или круглой стали диаметром 16 (18) мм².

Далее выставить их в вершины полученного треугольника и с помощью кувалды забить в землю на глубину 3 м

Также важно чтоб верхние части заземлителей (электродов) находились на уровне выкопанной траншеи чтоб к ним можно было приварить полосу

Сварные работы

После того как электроды будут забиты на необходимую глубину с помощью стальной полосы 40х4 мм необходимо сварить между собой заземлители и вывести данную полосу на фундамент здания где будет подключен заземляющий проводник дома, дачи или коттеджа.

Там, где полоса будет выходить на фундамент на высоте 0.3–1 мот земли, необходимо приварить болт М12 (М14) к которому в дальнейшем будет подключено заземления дома.

Обратная засыпка

После выполнения всех сварных работ полученную траншею можно засыпать. Однако перед этим рекомендуется залить траншею соляным раствором в пропорции 2–3 пачки соли на ведро воды.

После полученную почву необходимо хорошо утрамбовать.

Проверка контура заземления

После выполнения всех монтажных работ возникает вопрос «как проверить заземление в частном доме?». Для этих целей конечно обычный мультиметр не подойдет, поскольку у него очень большая погрешность.

Для выполнения данного мероприятия подойдут приборы Ф4103-М1, Клещи Fluke 1630, 1620 ER и так далее.

Однако эти приборы очень дорогие, и если Вы выполняете заземление на даче своими руками, то для проверки контура Вам будет достаточно обычной лампочки на 150–200 Вт. Для данной проверки Вам необходимо один вывод патрона с лампочкой подключить к фазному проводу (обычно коричневого цвета) а второй — к контуру заземления.

Если лампочка будет ярко светить — все отлично и контур заземления полноценно функционирует, если же лампочка будет тускло светить или вообще не испускать световой поток — значит контур смонтирован неверно и нужно либо проверять сварные стыки или монтировать дополнительные электроды (что бывает при низкой электропроводимости почвы).

Назначение и принцип работы ЗУ

Заземляющее устройство (ЗУ) — это совокупность заземлителя и заземляющих проводников которые соединяют землю с электрическими приборами, машинами и электроустановками.

Главная задача ЗУ – создание надежного соединения для отвода напряжения с элементов, которые могут попасть под высокое напряжение.

Причиной тому чаще всего служат:

  • молния;
  • вынос потенциалов;
  • вторичная индукция из-за влияния близко находящихся токоведущих частей.

Роль земли может выполнять грунт или вода в крупных водоемах и реках, каменноугольные выработки, и иные природные или рукотворные объекты с похожими свойствами.

Разделяют три вида заземления:

  • рабочее зазмеление необходимо для нормального функционирования прибора или установки, которое пропускает через себя рабочий ток, составляющий часть тока в фазе трехфазной системы или в одном из полюсов постоянного тока;
  • зануление заземление — нейтраль трехфазного генератора или трансформатора заземлена и от нее проложен нулевой провод, выполняющий одновременно функции рабочего и защитного зануления;
  • заземление безопасности — главной задачей является уменьшение шагового напряжения и обеспечение электробезопасности. Это осуществляется путем снижения сопротивления каждого отдельного заземлителя и равномерным распределением потенциала по всей площади;

В трехфазных сетях с напряжением менее 1000 Вольт при наличии изоляции нейтрали в обязательном порядке требуется защитное заземление, и независимо от режима изоляции в сетях от 1000 Вольт.

В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.

К первым относятся:

  • конструкции домов и помещений, осуществляющие соединение с землей;
  • фундаменты из железобетона — при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
  • подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
  • оболочки кабеля из свинца.

Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.

В качестве искусственных заземляющих устройств применяются элементы представляющие собой:

  • стальные трубы от 3 см в диаметре и от 2 метров длинной;
  • стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
  • длинные (до 10 м) стальные прутья диаметром от 1 см;
  • обрезки труб из стали, рельс;
  • металлические цепи, тросы.

Выбирая размеры электрода, обязательно учитывайте:

  • значение сопротивления заземлителя при наименьшей массе — уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения;
  • механическую устойчивость к подземной коррозии — показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.

Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.

Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см — данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.

Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.

Основные задачи заземления в бане

Главной задачей заземления является отвод электротока, который смог найти лазейку в защитной изоляции. Он устремляется вверх, к металлическим корпусам и крепежным элементам стиральных машин, электронагревательных приборов и т.д. Подобное оборудование не должно проводить ток, в принципе. Тем не менее, он притягивается к железным поверхностям, что ощущается в виде щипков, покалываний, а в особо серьезных случаях, и в более чувствительных ударах.

Организация заземляющего контура предназначена для:

  • Сохранения оборудования в рабочем состоянии;
  • Защиты человека от электромагнитного излучения, недомоганий и негативного настроя;
  • Устранения помех в электросети.

ПРИМЕР РАСЧЕТА ЗАЗЕМЛЯЮЩЕГО УСТРОЙСТВА

Рассмотрим следующий пример расчета заземляющего устройства. Заземляющее устройство подстанции требуется выполнить с сопротивлением

=4ом . Грунт в районе подстанции имеет замеренное удельное сопротивление ρ = 0,6·104ом·см . Заземлитель выполняется из уголков 50×50мм длиной 2,5м , соединяемых стальными полосами 40×54мм .

Требуется определить количество уголков и длину стальной полосы.

Вначале определяем приближенно количество уголков и общую длину стальной полосы.

По табл. 3 уголок 50×50 мм

имеет сопротивление растеканию

0,00318 ρ = 0,00318·0,6·104 = 19,1 ом

По наведенным справкам (на метеорологической станции) район относится ко II климатической зоне по табл. 4. В соответствии с этой таблицей для учета высыхания или промерзания грунта принимаем для уголков повышающий коэффициент равным 1,8. Тогда сопротивление одного уголка будет равно

19,1·1,8 = 34,4 ом

Примем расположение уголков возле подстанции в один ряд с расстоянием между ними 3 м

(см. рис. 11), т. е. контур заземления будет относительно простым.

Для учета взаимоэкранирования уголков в контуре принимаем коэффициент использования (см. § 9) равным 2 (Выбор коэффициентов использования приведен в специальной литературе и электротехнических справочниках). Таким образом, сопротивление одного уголка в контуре следует принимать равным

34,4·2 = 68,8 ом

,

а количество уголков

Таким образом, можно было бы принять для контура 17 уголков, если не учитывать еще сопротивления растеканию полосы как заземлителя. Однако при длине около 48 м

, которая требуется для соединения 17 уголков, учет этого сопротивления, как увидим, даст возможность уменьшить их количество. По графику на рис. 10 находим, что сопротивление полосы длиной 48м равно примерно 2ом . По табл. 4 принимаем повышающий коэффициент 4 на высыхание или промерзание грунта; коэффициент, учитывающий взаимоэкранирование полосы с трубами, принимаем равным 2,5. Таким образом, сопротивление полосы следует считать равным

2·4·2,5 = 20 ом

Уголки и полоса представляют собой два параллельно соединенных сопротивления. Их общее сопротивление, т. е. сопротивление контура заземляющего устройства подстанции

; определяется из уравнения

где Rуг

— общее сопротивление всех уголков;

Rп

— сопротивление полосы.

Из этого уравнения находим, что общее сопротивление уголков должно быть равно

Теперь уточняем требуемое количество уголков. Оно равно

Чтобы оставить длину соединительной полосы равной 48 м

, удлиняем се на двух углах контура на 4,5м с каждой стороны.

Фактическое сопротивление заземляющего устройства должно проверяться измерением на объекте. В случае необходимости к контуру присоединяются дополнительные заземлители.

Приведенный выше расчет выполнен исходя из того, что поблизости нет естественных заземлителей (Rест

). Если же они имеются, необходимо произвести измерение их сопротивления. Если сопротивление их достаточно мало (4ом или ниже для данного примера), то устройства искусственных заземлителей не требуется. Если оно слишком велико, то его уменьшают путем добавления искусственных заземлителей.

Допустим, что в рассмотренном выше случае можно использовать имеющийся вблизи естественный заземлитель (водопровод) с сопротивлением 5 ом

. В таком случае искусственный заземлитель должен быть выполнен уже не на 4ом , а только на 20ом . Его сопротивление подсчитывается по формуле

Дальнейший расчет производится так же, как указано выше.

Проверка контура заземления

Для точного измерения сопротивленияконтура потребуется специальное оборудование. При его отсутствии можно воспользоваться народным способом, который позволит определить работоспособность получившегося контура.

Необходимо взять мощный потребитель (от 2 кВт) и присоединить его таким образом: к фазе в квартире – один конец питающего провода, к заземлению – другой, и прибор должен заработать. После чего следует в этой сети измерить напряжение при выключенном и включенном оборудовании. Незначительная разница напряжения (5-10V) свидетельствует о том, что вы сделали правильный контур заземления, который полностью готов к эксплуатации.

Если же тест показал существенную разницу напряжения, то потребуется добавить еще электродов. От вершины треугольника в любую сторону прокапывается еще одна траншея длиной 2,5 м и на ее конце в грунт забивается дополнительный уголок, который связывается с полосой, и заново осуществляется проверка. Если все нормально, то контур заземления (схема выше) можно считать готовым.

  • Подключать проводники к металлическим трубопроводам любых инженерных коммуникаций.Покрывать лакокрасочными составами элементы схемы.Использовать для подключения заземления «нулевой» провод.Располагать горизонтальные заземлители и соединители наверху (наземная прокладка используется в редких случаях).

1. Прежде чем приступить к работе, рекомендуется составить временную схему контура, которую желательно сохранить. Ведь со временем многое забывается, и чтобы впоследствии не гадать, где проходит соединитель и в каком месте заложены электроды, под рукой всегда будет схема контура.

2. Электроды допускается размещать не только по вершинам треугольника.

Их можно расположить по дуге, на линии

Важно, чтобы общее сопротивление системы заземления не превышало 3 Ом (цепь напряжения до 500 В) и 4 Ом (до 1 кВт). При необходимости данный показатель уменьшается посредством установки еще 1-2 стержней

3. Если сделать замер самостоятельно не представляется возможным, то для абсолютной уверенности в качестве монтажа схемы, желательно пригласить специалиста. Данная услуга в среднем обойдется в 400-500 рублей.

Очень часто эту услугу энергетики буквально навязывают, убеждая, что данный вид работ имеют право осуществлять только лицензированные организации. Однако ни в одной нормативной документации нет указаний о запрете на самостоятельную установку контура.

Естественно, что монтаж можно заказать у энергетиков, принять готовую работу и заплатить за нее. Но если вы уверены в собственных силах, почему бы не смонтировать контур заземления самостоятельно.

https://youtube.com/watch?v=GfGhskgwMAYrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

  • elektrica.info
  • www.asutpp.ru
  • fb.ru

Группы потребителей

Важным элементом при монтаже электропроводки в бане своими руками будет формирование групп потребителей тока. Выше уже говорилось, что в основу разделения можно положить как однородные элементы, так и в целом всех потребителей того или иного помещения.

Мы предпочитаем рассказать о делении на три группы:

Как сделать освещение

В каждом из банных помещений должен быть свой источник света. Это может быть одна точка в комнате или несколько – зависит от того, какое освещение вы сочтете достаточным для глаз.

Когда речь идет об освещении парилки и моечной, там следует ставить светильники, класс защиты которых не ниже (а лучше выше), чем IP 44.

Если ставите обычные лампы накаливания, то их мощность не должна превышать 60 ватт.

Для низковольтовых источников света таких ограничений нет, но для их установки нужен понижающий трансформатор, который может быть установлен прямо в щитке (кстати, размеры щитка лучше определять по имеющемуся оборудованию и делать небольшой запас на возможные будущие усовершенствования).

Корпус светильника в парной не должен быть из пластмассы – лучше стекло в металлической защитной сетке. Цоколь должен быть керамическим. О корпусах и абажурах говорится еще вот в этой статье. В мыльной и парилке светильники должны быть герметичными. Уплотнители лучше силиконовые, а не резиновые (последние разрушаются быстрее, а светильники теряют герметичность).

Подробнее о светильниках можно прочесть в статьях, посвященных: освещению сауны, русской бани, парной.

Безмуфтовые стержни

Кстати, не смотря на все преимущества и хороший контакт, многие считают резьбовые соединения самым слабым местом подобных модульных систем.

Вспомните про водопроводные трубы, лежащие в земле. После нескольких лет эксплуатации в первую очередь в них ржавеют именно резьбовые муфты.

То же самое может произойти и со штырями. Кроме того, в момент забивания вибромолотом, нередко происходит ослабление соединения. Попросту говоря, резьба откручивается.

Опытные монтажники после каждого вхождение в грунт очередного стержня, подтягивают электрод по резьбе. В этот момент случается еще одна ошибка.

Затягивая гладкий штырь или муфту газовым ключом с насечками, вы царапаете и сдираете медный слой с поверхности. К чему это приводит, говорилось выше.

Через 3-4 года вместо полноценного электрода, у вас останется полая медная трубка с трухой из ржавчины внутри.

Так вы не будете касаться ни электрода, ни муфты.

Еще обратите внимание, что во всех муфтовых комплектах, сама муфточка немного шире диаметра стержня. Чем это чревато?. Более узкий электрод при заходе в землю вслед за такой муфтой, не будет достаточно плотно соприкасаться с поверхностью грунта

Для получения реальных показателей сопротивления иногда приходится выжидать несколько дней, пока земля не осыпится и не уплотнит все свободные места

Более узкий электрод при заходе в землю вслед за такой муфтой, не будет достаточно плотно соприкасаться с поверхностью грунта. Для получения реальных показателей сопротивления иногда приходится выжидать несколько дней, пока земля не осыпится и не уплотнит все свободные места.

Поэтому многие предпочитают другой вид стержней для глубинного заземления. Например, как у OBO Беттерманн с системой BP (Bundes Post).

У таких комплектов штыри стыкуются между собой без резьбы, методом прессовки.

Это что-то типа соединения “шип-паз” с саморасклепывающимся штырем. При забивании шип намертво расклинивается в пазе и получается абсолютно монолитное соединение.

Иногда внутри отверстия на конце одного стержня может идти свинцовый шарик, который при ударах еще более герметично заполняет все пространство.

Поэтому, если не доверяете муфтам и хотите свести на нет человеческий фактор, покупайте подобные комплекты.

Молниезащита или особенности монтажа заземления

В отличие от искусственного электричества заземление при молниезащите имеет совершенно другие особенности. Однако, можно выделить и одно общее сходство среди всех систем заземления, и это—использованные материалы и детали.

Устройство контура заземления

Конструкция защитного заземления может состоять из разного вида металлических деталей, однако, к ним есть отдельное требование такое же важное, как и нормативы относительно правил установки. Например, очень важно, чтобы элементы заземления были использованы нужного размера, как указывается в нормах и ПУЭ, прутья должны иметь гладкую структуру с диаметром не менее 5 мм

Сам металл и основа сооружения должны быть устойчивыми к воздействиям окружающей среды, то есть лучше, если электродами будут стальные элементы ведь от этого зависит долговечность защитного заземления. Известно, что сталь практически не поддается коррозии и отлично проводит электрический ток к грунту. При установке контура, следует использовать метод кольцевого, фундаментального или глубинного монтажа.

Важно! Каждый из способов монтажа защитного заземления для молниезащиты имеет индивидуальные правила. Не применяйте одинаковую тактику установки ко всем нижеперечисленным вариантам

Кольцевой способ представляет собой крепление металла в виде замкнутого кольца, которое обустраивается вокруг всего здания, подвергающегося заземлению.
Фундаментальный тип используется еще в начале строительства, поэтому планировку подобного заземления продумывают заранее

Важно чтобы в дальнейшем из постройки выступали элементы, предназначенные для крепления к ним токоотводящих металлических проводников.
Глубинный метод не предусматривает строгих параметров при установке, однако приходиться руководствоваться типом почвы и ее структурой, отсюда и высчитывать оптимальную глубину залегания электродов. Доступность и простота монтажа—это большой плюс подобного способа.

Линейные размеры при монтаже системы заземления

В нашей статье мы подробно разобрали для каких целей применяется защитное заземление и что из себя представляет назначение защитного заземления, следовательно, в заключение нужно выделить, что без подобного устройства в современных условиях нельзя обойтись.

Чем они отличаются

Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.

Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.

Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:

  1. функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
  2. для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
  3. оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.

Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.

Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).

К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:

  • Приводы всех без исключения электрических аппаратов.
  • Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
  • Обмотки измерительных преобразователей, относящихся к разряду вторичных.
  • Стальные остовы и корпуса передвижных (переносных) электрических приемников.
  • Все открытые части работающего в данный момент оборудования.

Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий