Как достичь максимальной эффективности биогенератора
Чтобы добиться максимальной эффективности работы биогенератора, брожение органической смеси должно быть равномерным. Субстрат должен постоянно двигаться, так удастся получить максимум газа.
Благодаря мешалкам погружного или наклонного вида, которые оборудованы электроприводом, обеспечивается постоянное перемешивание биомассы. Эти мешалки расположены вверху или сбоку типового реактора.
В кустарных установках используется механическое устройство перемешивания по типу бытового миксера. Он может быть ручным или работать от электропривода.
Самое главное условие для эффективной добычи биогаза – соблюдение температурного режима. Обогрев может осуществляться:
- с помощью автоматизированных систем подогрева. Они используются в стационарных установках. Если температура в реакторе падает ниже заданной, система автоматически включается. При достижении нужной температуры система самостоятельно отключается;
- с помощью газовых котлов – осуществляется прямой нагрев с использованием электроотопительных приборов или встроенных нагревательных элементов.
Слой стекловаты может стать отличным каркасом для реактора. Для теплоизоляции также подойдут пенополистирол. Эти материалы помогут уменьшить потери тепла.
Схема и конструкция генератора Теслы
Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.
Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту.
Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:
- диаметр намотки;
- сечения провода для каждой из обмоток;
- расстояние между катушками.
Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.
Виды солнечных коллекторов
Виды солнечных коллекторов
Существует своя классификация данных устройств, которая базируется на их конструкции:
- Плоский,
- Воздушный,
- Вакуумный.
Плоская конструкция внешне похожа на ящик, выполненный из алюминия, внутри которого находятся трубки из медных материалов. На дне ящика находится довольно толстый теплоизоляционный слой. Сверху изделие закрыто специальными материалами, например, закаленным стеклом или пропиленегликолем. Именно данная поверхность и будет поглощать в себя тепло солнечных лучей. Среди всех видом изделий эта конструкция является наиболее прочной и долговечной, поэтому она рекомендована для установки в регионах, где регулярно выпадает дождь или снег.
Однако у плоского коллектора имеется один довольно существенный недостаток: если он выходит из строя, то это будет касаться всей отопительной системы. Ремонту, как правило, не подлежит, его придется сразу менять и устанавливать новый. Его можно применять не только для обогрева, но и для горячего водоснабжения, однако его производственной мощности хватит лишь для того, чтобы прогреть температуру всего на 20-30 градусов выше по сравнению с температурой окружающей среды. Данная модель является самой дешевой среди всех других видов.
Конструкция воздушного коллектора функционирует по принципу парникового эффекта. Солнечные лучи, притянутые рабочей поверхностью, будут полностью поглощаться. Эта тепловая энергия прогревает массу воздуха, которая находится внутри конструкции. В ней может быть предусмотрен специальный вентилятор, передающий горячий воздух дальше в жилые помещения, однако имеются устройства, обеспечивающие естественную циркуляцию. Данный коллектор представляет собой прочную, надежную и очень долговечную конструкцию, которая практически не будет нуждаться в проведении ремонтных работ. Их недостаток заключается в том, что диапазон прогрева воздуха не слишком большой.
Вакуумный коллектор состоит из системы медных трубок, размещенных в стеклянном сосуде довольно большого объема. Между стенками воздуха нет, он полностью откачан. Вакуум в данном случае выполняет функцию теплоизолятора и одновременно проводника.
Все элементы располагаются в ряд, что позволяет поглотить как можно большее количество солнечной энергии. В зависимости от того, какой протяженности будут трубки, можно будет рассчитать, сколько тепла они станут давать. Для не слишком большого дома вполне подойдут трубки, длина которых не будет превышать два метра с внутренним диаметром 6 см. Стекло, используемое в данной конструкции, отличается хрупкостью, поэтому такие осадки, как град, а также упавшие ветки и прочие физические воздействия могут привести к тому, что она выйдет из строя.
Ремонтные работы в этом случае связаны с необходимостью замены трубки, которая вышла из строя, что является несомненным плюсом, так как нужды в полной замене системы не будет. В зимний период эффективность от использования такого солнечного коллектора значительно выше по сравнению с плоскими устройствами. Это связано с его возможностью лучше прогревать воду и сохранять тепло в течение долгого времени. Коллекторы вакуумного типа, используемые для прогрева дома, обычно имеют только самые положительные отзывы со стороны потребителей, так как можно приобрести изделия различных размеров, поэтому они подойдут даже для достаточно больших домов. Это позволяет хорошо сэкономить на отоплении, не снижая при этом показатели коэффициента полезного действия.
Стоит отметить, что коллекторы могут быть сезонного использования и круглогодичного применения. Первая разновидность может функционировать только в том случае, если температура окружающей среды не ниже ноля градусов. Круглогодичные являются универсальными конструкциями, однако их стоимость будет значительно выше.
Осуществляя выбор солнечного коллектора, следует учитывать не только собственные финансовые возможности, но и ряд других параметров:
- Требуемая мощность,
- Площадь крыши, так как коллектор устанавливается обычно именно там.
Жидкое топливо из солнечной энергии
Сейчас электричество получают с помощью сжигания органического топлива, например угля и природного газа. У этого способа есть две проблемы: органическое топливо вредит экологии и когда-нибудь закончится. Это заставляет ученых искать замену органике.
С 2001 года китайские ученые пытались преобразовать солнечную энергию в жидкое топливо. Спустя 20 лет у них это получилось.
Исследователям удалось получить жидкий продукт с минимумом примесей — содержание метанола в нем достигает 99,5%. Для этого потребовалось три шага:
- превратить свет, полученный с помощью солнечных батарей, в энергию;
- с помощью этого электричества разложить воду на водород и кислород;
- соединить водород и оксид углерода и получить метанол.
Чтобы получить нужное количество солнечного света, исследователи используют целые фермы солнечных батарей
Как это применять: в отличие от нефти и угля, это топливо сгорает чисто. Если у Китая получится сделать производство жидкого метанола массовым, углекислого газа в атмосфере станет намного меньше — на долю Китая приходится около 29% мировых выбросов.
Эфир и его свойства
Этот термин бытовал в ходу у науки ещё столетие назад. Используя понятие «эфир», открыты были все базовые законы физики и не только. Оперируя именно этим понятием, проводили свои исследования и разработки Никола Тесла и другие умы XIX и начала XX века.
Наука однажды от эфира отреклась. В результате многие явления, такие как поля, оказались без него необъяснимы, а он сам теперь не имеет чёткого определения. Это не помешало использовать понятие «эфир» в обосновании разработок получения «свободной энергии из ничего». Хотя ныне под этим зачастую подразумеваются совершенно разные явления.
Сегодня под выражением «получить эфирную энергию» понимают как добычу её из того же эфира, который имел в виду Н. Тесла, так и вообще все способы получения «дармовой энергии из ничего». Эфир при этом считается структурной частью пространства и носителем любой энергии.
Дальнейшие разработки механизма
В результате ученый стал разрабатывать турбину. В основу этого агрегата вошел водяной насос, который ускорялся благодаря плоским железным дискам. Подобная основа может входить в состав других не менее полезных изобретений. В итоге рабочего процесса схема бестопливного генератора свободной энергии была усовершенствована, электричество передавалось в требуемом количестве. Чтобы собрать аппарат, необходимо выполнить три этапа:
- собрать вторичную обмотку, которая наполнена высоким содержанием вольтов;
- установить первичные мотки с низким напряжением;
- соорудить механизм управления.
Чтобы создать рабочую схему генератора свободной энергии, необходимо сделать основу, где будет собираться вторичная обмотка. Для этого потребуется предмет в форме цилиндра, медный провод, который будет на него намотан. Основной материал не должен пропускать электроэнергию, поэтому лучше использовать ПВХ трубу. Обмотка составляет 800 витков. Первичный провод толщиной должен превышать вторичный. В результате бестопливное устройство имеет такой вид.
Генератор свободной энергии Тесла
Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.
Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние – его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.
Краткое описание конструкции
Конструкция базового корпуса выполнена из фанерного листа толщиной 12 мм, ближний экран сделан из органического стекла. Помимо этого, допускается использование обычного стекла толщиной 2,5 мм. На задней панели корпуса крепится обшивка (пенопласт или минвата толщиной 25 мм). Воздухоприемник собирается из пустой алюминиевой тары из-под пива или разных напитков. Материал перед сборкой требуется покрасить темным цветом. В результате, для этого используется матовая термоустойчивая эмаль. А вот, сторона банки (крышка) вырезается согласно технологии для улучшения эффективности теплообмена между стенками емкости и атмосферой.
Поэтому, в солнечные дни даже и при падении температуры внутри банок воздух прогревается быстро. С помощью вентилятора производится циркуляция теплых воздушных масс в помещении.
Что еще любит энергия денежного потока
Вот еще несколько советов, которые будут полезны «адептам» энергии денег.
Так, денежный эгрегор любит, когда психологическая энергия поступает к ним в упорядоченном виде. Этому помогут различные расчеты, таблицы, ведение бюджета. Чем конкретнее ваши запросы, тем результативнее будет ответ. Запрос в форме «Хочу много денег» бесполезен, если вы этого еще не поняли.
Ведите бюджет и следите за тратами – это лучшее, что вы можете сделать для улучшения собственного финансового положения.
Еще один отличный магнит для денег – это энергия личной ответственности. Не бойтесь принимать на себя ответственность за собственные поступки, чтобы не обвинять окружающих в собственных промахах и ошибках. Этот прием действует безотказно и в будущем открывает возможности для безграничного денежного потока, направленного на вас.
личный кабинет
Разновидности вакуумных солнечных коллекторов
В основе классификации солнечных коллекторов вакуумного типа лежат две их характеристики. Это вид стеклянного цилиндра и вид используемого теплового канала.
В конструкции вакуумных коллекторов встречаются стеклянные цилиндры (трубки) двух видов:
- Коаксиальные трубки. Их конструкция предполагает наличие двух стеклянных колб, помещенных одна в другую. Пространство между внешней и внутренней колбой заполнено вакуумом. Поверхность внутренней колбы покрыта специальным веществом с высоким коэффициентом теплопоглощения. По сути внутренняя трубка и является теплоприемником. Во внутренней трубке размещен полый медный контур, заполненный эфирным составом. При нагревании данный состав испаряется и отдает полученную энергию теплоносителю, после чего обратно конденсируется.
- Перьевые трубки. В их конструкции предусмотрена одна стеклянная колба, в которую помещен специальный медный элемент – тепловой поглотитель. Для увеличения его площади он выполняется рифленым. Вследствие этого он отдаленно становится похож на перо, отсюда и пошло название. Медный тепловой абсорбер покрывается специальным составом, увеличивающим эффективность поглощения солнечных лучей и выработку тепла. Коллекторы с перьевыми трубками обладают большей эффективностью и более долговечны по сравнению с агрегатами, где используются коаксиальные трубки.
Среди используемых в коллекторах вакуумного типа тепловых каналов выделяют также два вида:
- Каналы типа Heat Pipe. Такая конструкция предполагает наличие внутри полости трубки специального теплосборника. Испаренный эфирный состав передает ему тепловую энергию, а теплосборник в свою очередь отдает ее теплоносителю для дальнейшего распространения по системе.
- Прямоточные U-образные каналы. Особенностью данной конструкции является циркуляция теплоносителя по тонкому U-образному каналу непосредственно внутри стеклянного цилиндра теплоприемника. С одной стороны входит вода, либо другой применяемый теплоноситель. Проходя по трубке, он забирает тепловую энергию от теплоприемника и выходит со второго конца уже нагретый.
«Бесконечная» энергия из воздуха
В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.
Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы
(Фото: UMass Amherst / Yao and Lovley labs)
С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.
Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.
Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.
Солнечные паруса
В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.
LightSail 2 во время развертывания
(Фото: The Planetary Society)
Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.
Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.
Зеленая экономика
Съедобная упаковка и солнечный парус: новинки космических эко-технологий
Конструктивные особенности и принцип работы
Гелиосистемы воплощаются как набор оборудования, предназначенного для добычи тепловой энергии из солнечной. Рабочими компонентами являются:
- солнечные коллекторы;
- насос;
- аккумулирующий бак;
- управляющий контроллер.
Теплообменник заключен в бак-аккумулятор, заполненный водой, здесь происходит передача тепла от нагретой рабочей жидкости. Во время монтажа аккумулятора следует предусмотреть возможность дополнительного нагрева, например, посредством газового котла. Эта мера позволит восполнить недостаток мощности коллектора при пасмурной погоде.
Насос обеспечивает циркуляцию теплоносителя (рабочей жидкости) между баком и гелиоколлектором. Управляющий контроллер координирует деятельность основных узлов и защищает схему от перегрева.
Входящая в конструкцию медная панель укреплена высокоселективным материалом. Для изготовления корпуса чаще всего используется алюминий. Ударопрочное стекло, предусмотренное в современных моделях, содержит в составе минимум металла.
Принцип работы солнечного коллектора
Принцип работы солнечного коллектора
Чтобы конструкция функционировала наиболее эффективно, разработчики смогли совместить электричество и энергию солнечных лучей. Дело в том, что в зимний период солнце можно найти на небосклоне далеко не всегда. Из-за этого выходит, что данный обогревательный прибор не сможет функционировать в полной мере. Благодаря подключению к электрической сети осуществляется принудительная циркуляция теплообменника по системе, что делает затраты минимальными. Стоит отметить, что подобное устройство устанавливать рационально только в домах с большой площадью.
Некоторые специалисты утверждают, что гелиосистема окупается довольно долго, однако эта точка зрения ошибочна. Если сложить все средства, вложенные в данное оборудование и техническое обслуживание, то они вернутся приблизительно в течение трех-пяти лет. Чем регулярней его будут использовать, тем быстрее он окупится
Более того, необходимо принимать во внимание, что расходы на отопление с каждым годом становятся все больше и больше из-за постоянного роста тарифов
Управление фотоэлектрическим и тепловым насосом
Другим примером использования избыточной энергии является подача теплового насоса. Для энергоэффективных, хорошо изолированных домов включение теплового насоса для отопления или охлаждения помещений может быть сдвинуто с течением времени. Таким образом, эти устройства идеально подходят для управления и, следовательно, интеллектуального хранения генерируемой энергии в виде тепла (или холода)
Для теплового насоса очень важно, чтобы его компрессор не включался и не выключался слишком часто. Этот параметр можно задать в Datamanager через интерфейс, доступный из веб-браузера
Вы также можете установить в качестве приоритета подготовку горячей воды в определенные часы, чтобы ее можно было использовать, например, после возвращения с работы. Карта Fronius Datamanager будет управлять нагревом c.в.у. в зависимости от имеющегося избытка вырабатываемой энергии, а если он будет в пасмурные дни недостаточно – включит подогрев воды заблаговременно времени.
Нюансы расчета ветрогенератора
Выполнить точные расчеты, учитывающие все факторы, воздействующие на ветровой генератор, довольно сложно. Если человек теоретически слабо подготовлен к таким действиям, ему будет затруднительно определить все данные, для получения которых потребуются специальные измерения и расчеты.
По этой причине многие пользуются упрощенным вариантом, выдающим довольно близкие к реальности результаты. При этом большого количества исходных данных не требуется.
Для расчета ветряного генератора для дома выполняют определенные действия:
- определяются в потребности с электричеством, для чего подсчитывается общая мощность всех потребителей;
- полученные данные увеличивают на пятнадцать – двадцать процентов, чтобы создать определенный запас;
- узнав требуемую мощность, можно определить требуемый тип генератора;
- рассчитываются параметры ветрового колеса.
Виды инверторов и их конструктивные особенности
Существует три вида инверторов для солнечных батарей, отличающихся по принципу своего действия: сетевые, автономные и гибридные (многофункциональные).
Сетевые
Сетевой инвертор для солнечных батарей работает совместно с централизованным электроснабжением. Помимо преобразования энергии в задачи таких установок входит контроль за напряжением и частотой тока внешней сети. Также они передают лишнее электричество в основную электросеть. Кстати, владелец фитоэлектростанции может неплохо на этом заработать, продавая излишки энергии частным компаниям.
Сетевые преобразователи электроэнергии создаются на основе емкостных диодов с низкочастотным модулятором. Чаще всего их используют для солнечных панелей в виде тарелок. Преимущества устройств в их компактности, высокой степени защиты и относительно быстрой скорости преобразования, при низком уровне энергопотребления.
Кроме своей основной функции сетевые инверторы имеют ряд дополнительных возможностей:
- регулировка частоты напряжения;
- регулировка амплитуды тока;
- защита оборудования от перегрева;
- защита сети от коротких замыканий;
- некоторые модели оснащены Wi-Fi-связью, благодаря которой можно выводить информацию на экран телефона, планшета или ПК.
Сетевые устройства монтируются в электрическую цепь между солнечной батареей и электрической сетью 220-380 В. Их использование предполагает работу гелиостанции без накопительных аккумуляторов. Функционировать они могут только в дневное время, когда есть солнечный свет.
Автономные
Инверторы автономного типа включены в общую конструкцию солнечной электростанции и обеспечивают постоянное поступление к потребителям электроэнергии. Устройства данного вида преобразуют накопленную в АКБ энергию до требуемых параметров и направляют ее для дальнейшего использования.
Автономный инвертор для солнечных батарей
Автономные инверторы в зависимости от формы выходного сигнала по току, делятся на синусоидальные и квази-синусоидальные. Первые установки отличаются повышенными техническими параметрами, но при этом они более габаритные и стоят дороже. Это сужает круг потребителей, которые могут позволить себе такие устройства.Однако они обеспечивают надежную работу электроприборов, которые чувствительны к перепадам напряжения.
Автономные инверторы квази-синусоидального более востребованы нежели синусоидальные. Они меньше в размерах и стоимость их более доступная. Минус в том, что такое оборудование нежелательно устанавливать в местах с нестабильным электроснабжением, иначе чувствительные приборы могут просто сгореть от скачка напряжения.
Многофункциональные
Гибридный инвертор для солнечных батарей включил в себе преимущества первого и второго вида. Это самое надежное оборудование, обладающее большим количеством настроек:
- повышает мощность сети при перегрузках;
- продолжает работу при снижении напряжения;
- исключает проблемы со счетчиками.
Многофункциональный тип инвертора подойдет как для домашней, так и для промышленной солнечной станции. Он может параллельно получать нагрузку из сети и от аккумуляторной батареи, выбирая, что в данной ситуации наиболее приоритетно. Единственный его недостаток — дороговизна.
Критерии выбора
Определяющим фактором служат климатические условия: длина солнечных дней, их количество. Жителям регионов с малой освещенностью подойдут панели из микроморфного кремния – они не нуждаются в точном ориентировании, по суммарной годовой мощности опережают прочие тонкопленочные вариации. В северных районах востребовано текстурированное стекло.
Критерием выбора гибких солнечных панелей является длина солнечных дней
Важно, чтобы мощность модуля соответствовала потребностям используемых электроприборов. Необходимо найти не только оптимальный участок для размещения изделий, но и резервную площадку, позволяющую впоследствии нарастить мощность
Качество и длительность эксплуатации, а также стоимость продукции зависят от базового материала, номинальной производительности, типа конструкции и параметров фотоэлемента. На профильном рынке востребованы как иностранные, так и заслужившие доверие отечественные бренды – последние оптимально приспособлены к климатическим условиям региона.
Заслуживают внимания гибридные панели, генерирующие электрическую и тепловую энергию.
Вода вместо бензина? Что за глупости!
Двигатель, работающий на спирте, наверное, найдет больше понимания, чем идея разложения воды на молекулы кислорода и водорода. Ведь еще в школьных учебниках сказано, что это совершенно нерентабельный способ получения энергии. Однако уже существуют установки для выделения водорода способом сверхэффективного электролиза. Причем стоимость полученного газа равна стоимости кубометров воды, использованных при этом процессе
Не менее важно, что затраты электричества тоже минимальны
Скорее всего, в ближайшем будущем наряду с электромобилями по дорогам мира будут разъезжать машины, двигатели которых будут работать на водородном топливе. Установка сверхэффективного электролиза – это не совсем генератор свободной энергии. Своими руками ее достаточно трудно собрать. Однако способ непрерывного получения водорода по данной технологии можно совместить с методами получения зеленой энергии, что повысит общую эффективность процесса.
Как сделать генератор свободной энергии своими руками
Схема однофазного резонансного устройства Н. Тесла состоит из следующих блоков:
- Две обычные аккумуляторные батареи по 12 В.
- Выпрямитель тока с электролитическими конденсаторами.
- Генератор, задающий стандартную частоту тока (50 Гц).
- Блок усилителя тока, направленный на выходной трансформатор.
- Преобразователь низковольтного (12 В) напряжения в высоковольтное (до 3000 В).
- Обычный трансформатор с соотношением обмоток 1:100.
- Повышающий напряжение трансформатор с высоковольтной обмоткой и ленточным сердечником, мощностью до 30 Вт.
- Основной трансформатор без сердечника, с двойной обмоткой.
- Понижающий трансформатор.
- Ферритовый стержень для заземления системы.
Все блоки установки соединяются согласно законам физики. Система настраивается опытным путем.
Электролиты
Спейсеры на основе целлюлозы совместимы со многими электролитами. Исследователи применяли ионную жидкость, по сути – жидкую соль, как электролит в батарее, а также – естественные электролиты типа пота, крови и мочи человека. Использование ионной жидкости без содержания воды должно означать, что батареи не замерзнут или испарятся, что, потенциально, позволит применять их в экстремальных температурах. Условия работы (температура, влажность, статическое давление) для таких батарей будут зависеть от физических и химических свойств электролита, а также – от долговечности целлюлозной сети. Оба фактора являются потенциальными ограничителями.