Как сделать теплогенератор
Некоторым людям не хватает денежных средств на приобретение готового теплогенератора. В таком случае есть смысл попробовать сделать его самостоятельно.
Схема механизма работы теплового насоса.
Существует 2 конструкции подобных устройств: статическая и роторная. В первом случае главным элементом устройства будет сопло. Во втором для создания кавитации будет служить ротор. Чтобы выбрать один из вариантов исполнения, есть смысл сравнить обе вихревые конструкции.
Список элементов, которые будут нужны, для того чтобы изготовить вихревой теплогенератор своими руками:
- трубы;
- дрель;
- насос;
- кавитатор;
- манометр;
- термометр;
- гильзы для термометров;
- краны;
- электродвигатель.
Что такое кавитация
Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.
Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.
Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.
Сделать своими руками?
Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:
Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.
По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.
Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?
Источник
Принцип действия
Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий
Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.
Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.
На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.
Принцип действия кавитационного преобразователя
Иллюстрация | Описание процесса |
|
Устройство и особенности функционирования
Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
- Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
- Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Распространенные устройства
Рассмотрим наиболее часто рекламируемые в Интернете вихревые насосы.
Выпускаемый НПП «ЭкоЭнергоМаш» насос НТГ-5,5 имеет следующие характеристики:
- Мощность электродвигателя: 5,5 кВт
- Теплопроизводительность: 6,6 кВт/ч
Здесь возникает первый вопрос к производителю: каким образом, в обход закона сохранения энергии, это устройство выделяет тепловой энергии больше, чем потребляет электрической? Точно такое же превышение тепловыделения над расходом энергии обещается и для других изделий этой фирмы.
Московская компания «Экотепло» выпускает несколько вариантов вихревого теплогенератора, наименее мощный из которых — это 55-киловаттный НТГ-055. Столь высокая мощность привода недвусмысленно указывает на реальную тепловую производительность устройств подобного класса, хотя производитель по-прежнему указывает в описании превосходство своих изделий над традиционными электрическими котлами.
В описании устройств, производимых НПО «Термовихрь», характеристики более завуалированы. Так, для трехкиловаттной модели вихревого теплогенератора заявленная теплопроизводительность составляет 3100 ккал/ч. Но, если вспомнить школьный курс физики, можно вычислить, что при стопроцентном преобразовании электрической энергии в тепловую 1 кВт*ч энергии равен 860 килокалориям, то есть идеальный вихревой насос с заявленной теплопроизводительностью потреблял бы 3,6 киловатт-часа электроэнергии. Следовательно, нам вновь предлагают устройство, часть тепловой энергии берущее из ниоткуда.
Информация от производителей таких устройств, репортаж телеканала Россия
Конструктивные особенности оборудования
Что же представляет собой такой агрегат? Основным узлом в нем является кавитационный теплогенератор, выполненный в виде насоса, со специальным профилем проточной части. Проходя через него, вода нагревается. Происходит это за счет формирования вихревого потока. Возникая в нем, кавитационные разрывы приводят к нагреву жидкости. Причем роль теплоносителя может играть любой антифриз.
Смотрим видео, устройство генератора:
https://youtube.com/watch?v=h6-x9DWmffw
Нагрев приводит к изменению химического состава жидкости за счет резкого снижения ее давления. Выделяемая при этом энергия может использоваться для отопления и является достаточно дешевой.
Такие установки, как правило потребляют в 1,5 раза меньше энергии, чем радиаторные и другие системы. При этом нагрев жидкости в них происходит в замкнутом контуре при его прохождении через кавитатор.
Принцип работы таких устройств заключается в превращении одного вида энергии в другой. Она в свою очередь преобразуется в тепловую, причем разница между выделяемой и потребляемой достаточно существенная.
К достоинствам кавитационных теплогенераторов следует отнести возможность их монтажа без каких-либо разрешительных документов. Это связано с тем, что электроэнергия в них используется лишь для работы электродвигателя.
И хотя сегодня ни одна из существующих теорий не может полностью описать процессы, происходящие в кавитаторе, они все же, эксплуатируются по всему миру и причем довольно успешно. Что касается научных исследований в этой сфере, то они сводятся к фиксации особенностей работы тепловых установок такого типа.
Плюсы и минусы кавитационных источников энергии
Кавитационные нагреватели – это простые устройства, которые преобразуют механическую энергию рабочей жидкости в тепловую. По сути, данный прибор состоит из центробежного насоса (для ванной, скважин, систем водоснабжения частных домов), который имеет низкий показатель эффективности. Преобразование энергии в кавитационном нагревателе широко используется в промышленных предприятиях, где нагревательные элементы могут быть повреждены при контакте с рабочей жидкостью, у которой серьезная разность в температурах.
Конструкция кавитационного теплогенератора
Плюсы устройства:
- Эффективность;
- Экономичность теплоснабжения;
- Доступность;
- Можно собрать своими руками домашний прибор производства тепловой энергии. Как показывает практика, самодельный прибор не уступает купленному по своим качествам.
Минусы генератора:
- Шумность;
- Сложно достать материалы для производства;
- Мощность слишком большая для небольшого помещения до 60-80 квадратных метров, бытовой генератор проще купить;
- Даже мини-приборы занимают много места (в среднем как минимум полтора метра комнаты).
Принцип работы
«Кавитация» относится к образованию пузырьков в жидкости, таким образом, рабочее колесо работает в смешанной фазе (период жидкости и пузырьков газа) окружающей среды. Насосы, как правило, не предназначены для смешанной фазы потока (их работа уничтожает пузыри, из-за чего кавитационный генератор теряет эффективность). Данные термические приспособления предназначены, чтобы вызывать смешанный поток фаз как часть перемешивания жидкости, что приводит к термической конверсии.
Чертеж теплогенератора
В коммерческих кавитационных обогревателях, механическая энергия приводит в действие нагреватель входной энергии (например, двигатель, блок управления), в результате чего жидкость, которая отвечает за образование выходной энергии, возвращается к источнику. Такое сохранение превращает механическую энергию в тепловую с небольшой потерей (как правило, менее 1 процента), поэтому при пересчете учитываются погрешности преобразования.
Немного по иному работает суперкавитационный реактивный генератор энергии. Такой нагреватель используется на мощных предприятиях, когда тепловая энергия выхода передается на жидкость в определенном устройстве, её мощность значительно превышает количество механической энергии, необходимой для приведения в действие нагревателя. Эти приборы более энергетически продуктивны, чем возвратные механизмы, в частности тем, что они не требуют регулярной проверки и настройки.
Существуют разные типы таких генераторов. Самый распространенный вид – это роторно-гидродинамический механизм Григгса. Его принцип действия основан на работе центробежного насоса. Состоит он из патрубков, статора, корпуса и рабочей камеры. На данный момент существует множество модернизаций, самый простой – приводной или дисковый (сферический) водяной насос ротационного действия. Он представляет собой дисковую поверхность, в которой просверлено много различных отверстий глухого типа (без выхода), данные конструктивные элементы называются ячейки Григгса. Их размерные параметры, число напрямую зависят от мощности ротора, конструкции теплогенератора и частоты вращения привода.
Гидродинамический механизм Григгса
Между ротором и статором находится определенный зазор, который необходим для нагрева воды. Данный процесс осуществляется при помощи быстрого движения жидкости по поверхности диска, что способствует повышению температуры. В среднем, ротор движется приблизительно со скоростью 3000 оборотов в минуту, чего достаточно для повышения температуры до 90 градусов.
Второй вид кавитационного генератора принято называть статическим. Он не имеет, в отличие от роторного, никаких вращающихся частей, для того, чтобы осуществлялась кавитация, ему необходимы сопла. В частности, это детали известного Лаваля, которые подключены к рабочей камере.
Для работы, подключается обычный насос, как в роторном виде генератора, он нагнетает в рабочей камере давление, чем обеспечивает большую скорость движения воды, соответственно, повышение её температуры. Скорость жидкости на выходе из сопла обеспечена разностью диаметров поступательного и выходного патрубков. Его недостатком является то, что эффективность значительно ниже, чем в роторном, тем более, он более габаритный, тяжелый.
Оборудование для воздушного отопления частного дома
Смонтированное устройство воздухообогрева представляет собой центральную систему кондиционирования, обеспечивающую круглосуточный обогрев и циркуляцию воздуха, поддерживающего заданную температуру в помещении. Традиционно система воздушного отопления состоит из следующих основных частей:
- воздухонагревателя;
- вентилятора;
- воздуховодов;
- дополнительных модулей.
Нагреватели для воздушного отопления делятся на теплогенераторы и калориферы
Основным механизмом воздушной системы являются нагреватели. Они могут быть двух видов:
- Калориферы, канальные агрегаты. Воздух нагревается в момент вентиляции, проходя по разогретым каналам.
- Теплогенераторы. Обогревают воздух путем сжигания различных видов топлива.
Воздушное отопление в частном доме, в производственных помещениях оснащается вентиляторами, которые обеспечивают забор холодного и движение теплого воздуха. Они различаются по мощности, принципу работу (дутьевые и вытяжные) и производительности. Воздуховоды могут иметь два назначения:
- приточные (подающие воздух к нагревательным приборам);
- обратные (транспортирующие уже нагретый воздух).
Монтаж систем воздушного отопления предполагает размещение воздухоотводящих каналов под фальшполом, над фальшпотолком, в перекрытиях и стенах.
Многие такие системы имеют вспомогательные модули, целью которых является дополнительная очистка воздуха и его увлажнение. Для очистки воздуха применяются фильтры. Чаще это многоступенчатое устройство, которое сначала улавливает крупные частицы, затем пластичный электростатический слой задерживает более мелкие (до 0,01 мкм) компоненты, а угольный механизм, удаляющий запахи, пропускает в помещение свежий и теплый воздух.
В системе воздушного отопления используются два вида вентиляторов – приточные и обратные
Возможности применения
Приборы кавитационного действия востребованы в различных отраслях, при этом в основном их применяют в качестве альтернативного вида отопительных установок для дома. Также оборудование находит применение и в других сферах:
- обогрев и очистка воды в бассейнах;
- очистка отложений внутри теплообменников;
- в промышленности.
В последнем случае, к примеру, при изготовлении бетона с высокими эксплуатационными характеристиками.
Отопление
Кавитационный прибор способствует преобразованию механической энергии перемещающейся воды в тепловой потенциал, который направляется на обогрев различных по назначению и масштабу зданий, включая частные домовладения и промышленные комплексы.
Кавитационный теплогенератор может быть использован при отоплении
Автономное нагревание воды для бытовых нужд
Генератор кавитационного тепла способен в полной мере обеспечить хозяйство горячей водой, которая подается в кухню, санузел, баню. Также оборудование находит применение при подготовке воды в бассейнах, прачечных и саунах, используется в автономном водопроводе.
Применение кавитации тепла в производстве
Приборы актуальны при необходимости качественного смешивания субстанций с разными параметрами плотности и применяются в лабораториях, производственных цехах и других объектах промышленности.
Как сделать и установить тепловой насос своими руками?
Тепловой насос своими руками изготовить вполне реально, однако для этого необходимо найти хороший компрессор.
В качестве конденсатора можно использовать бак из нержавейки, ориентировочно на 100 литров. А для контура, по которому будет циркулировать теплообменник, отлично подойдут тонкие медные сантехнические трубки.
Тепловой насос своими руками – этапы изготовления:
- С помощью уголка, либо L-образных кронштейнов крепим компрессор к стене в том месте, где будет размещаться тепловой насос.
- Далее, из медных трубок делаем змеевик – обматываем их вокруг цилиндра подходящей формы. Следите за тем, чтобы шаг намотки по всем змеевику был идентичен.
- Бак разрезается на две части, внутрь вставляется змеевик, после чего бак сваривается обратно. При этом в нём создается несколько резьбовых входных отверстий – сверху и снизу, через которые наружу выводятся крайние трубки змеевика.
- В качестве испарителя используем обычную пластиковую бочку, в которую заводятся трубы внутреннего контура (либо любую другую емкость, объем которой идентичен конденсаторному баку).
Для транспортировки прогретой воды используются обычные ПВХ трубы.
Обмотка для самодельного теплового насоса из стали
Для заправки системы фреоном рекомендуется обратиться к специалисту.
Чтобы сделать тепловой насос Френетта своими руками нам необходимо обзавестись такими материалами:
- Стальной цилиндр (диаметр выбирайте исходя из мощности насоса, которая необходима вам для отопления: чем больше рабочая поверхность – тем более эффективным будет устройство);
- Стальные диски, с диаметром на 5-10% меньше, чем диаметр цилиндра;
- Электродвигатель (лучше всего изначально подбирать привод с удлиненным валом, так как на него будут устанавливаться диски);
- Теплообменник – любое техническое масло.
От количества оборотов, которое может выдать двигатель, будет зависеть температура, до которой насос Френетта сможет прогреть воду для отопления дома, либо бассейна. Чтобы вода в радиаторах прогрелась до 100 градусов необходимо, чтобы привод обеспечивал 7500—8000 оборотов/мин.
Вал силового агрегата на подшипниках размещаем внутри стального цилиндра. Место, где вал входит в цилиндр должно быть надежно уплотнено, поскольку наличие даже малейших вибраций быстро выводит механизм из строя.
На вал двигателя монтируются рабочие диски. Необходимое расстояние между ними можно задать, накручивая после каждого диска гайки. Количество дисков определяется в зависимости от длины цилиндра – они должны равномерно заполнять весь его объем.
В верхней и нижней части цилиндра просверливаем два отверстия: к верхнему будет подведены отопительные трубы, в которые будет подаваться масло, а к нижнему отверстию подсоединяется обратная труба для возврата использованного масла с радиаторов.
Вся конструкция закрепляется на металлической раме. После того как агрегат собран, цилиндр заполняется маслом, к нему подключаются патрубки отопительной магистрали и выполняется герметизация соединений.
Тепловой насос, созданный на производстве
Тепловой насос Френетта обладает очень высоким КПД, что позволяет его эффективно использовать в любых отопительных системах. Он может использоваться для обогрева любых хозяйственных помещений, гаражей, и жилых зданий. Кроме этого, за счет компактных размеров такой самодельный насос отлично подходит для прогрева бассейна, либо «теплого пола».
Монтаж тепловых агрегатов
Особенности монтажа тепловых насосов зависят, в первую очередь, от способа размещения внешнего контура.
- Геотермальные тепловые насосы. Для вертикального способа монтажа создаются скважины глубиной от 50 до 100 метров, в которые опускается специальный зонд. Для горизонтальной укладки создается траншея на ту же длину либо котлован, в котором трубы укладываются параллельно друг другу. Трубы закладываются в грунт на глубину полутора метров.
- Насосы вода-вода: внешний контур укладывается на дне водоема, и выводятся к тепловому насосу.
- Воздух-вода: блок с трубами внешнего контура устанавливается на крыше или на стене здания (по внешнему виду его трудно отличить от наружной коробки кондиционера), и подводится к тепловому насосу внутри помещения.
Помощь кавитационного теплогенератора
Климат сегодня сильно меняется из-за работы двигателей внутреннего сгорания. 40% углекислого газа на планете вырабатывается транспортом, значительная часть выбрасывается частными домовладельцами, жгущими топливо для обогрева. Выделяется в атмосферу сонм вредных веществ, нарушаются условия существования жизни на планете. Следовательно, энергия ТЭС не предлагается в качестве альтернативы, приносящей пользу. В силу очевидных причин.
Кавитационные теплогенераторы позволяют решить часть сложностей очевидным способом: перекачивая энергию из части пространства в другую, получится решать насущные потребности человеческой жизнедеятельности. К примеру, генератор может давать тепло и забирать. Ключевое преимущество обогревателей в том, что энергия не исчезает бесследно. Она остаётся теплом на омическом сопротивлении проводов, преодолевает силы трения. Все происходит в районе силовой установки, в конечном итоге теряется паразитными эффектами, неиспользуемыми в силу разрозненности факторов. Кавитационный генератор позволит собрать потерянные крохи простым методом: примется откачивать тепло из очага его образования:
- Обмотки двигателя.
- Поверхности трения.
Уже за счёт фактора КПД установки повысится: тепловые потери греют место, откуда перекачивается тепло. Это безусловный плюс. Остальное возьмётся из воздуха. Стоит вдуматься:
- Холодильник летом греет кухню, КПД падает.
- Кондиционер забирает жару с мороза или выкачивает холод с подсолнечной стороны здания.
А кавитационный теплогенератор способен собственные потери утилизировать с пользой. Обязан быть признан перспективным. Сложность – как получить побольше пузырьков из механического движения. Этому уже сегодня посвящены десятки, если не сотни патентов, к примеру, RU 2313036. Несложно догадаться, что для перекачивания тепло нужно откуда-то взять. Это правильная постановка вопроса, из-за упущения смысла происходящего люди не хотят верить, что кавитационный генератор – реальность: «Как теплотехник, скажу – это бред. Энергия из ниоткуда не возникает. Затрачивать меньше электроэнергии и получать больше тепловой позволяет тепловой насос.» (форум okolotok.ru)
Если профессионалу непонятно, что речь идёт о своеобразном тепловом насосе, что знает широкая публика про кавитационный теплогенератор… Установим, кому окажется полезен кавитационный теплогенератор. Доведённую до совершенства конструкцию допустимо применять:
- Для отбора энергии сточных вод.
- Охлаждения цехов с одновременным обогревом рабочих мест.
- Обогрева помещений без использования нефти, газа, мазута, угля, дров и пр.
Как самому сделать генератор
Первым трубчатый агрегат был разработанный Потаповым. Но патент на него он не получил, т.к. до сих пор обоснование работы идеального генератора считается неполными «идеальным», на практике также пытались воссоздать прибор Шаубергер, Лазарев. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука.
Перед началом работы нужно выбрать вакуумный или бесконтактный насос (подойдет даже для скважин) по своим параметрам. Для этого необходимо учесть следующие факторы:
- Мощность насоса (производится отдельный расчет);
- Потребная тепловая энергия;
- Величина напора;
- Тип насоса (повышающий или понижающий).
Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора
Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см
В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к. объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе.
Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора.
Разновидности
Кавитационные устройства делятся на следующие виды:
- роторные – вихревой кавитационный теплогенератор предусматривает видоизмененный центробежный насос, корпус которого представляет собой статор с входящей и выходящей трубой. Основной рабочий орган прибора – камера с подвижным ротором, который вращается по типу колеса,
- статические – в приборе отсутствуют вращающиеся детали, для кавитации применяют конструкцию из сопел с мощным центробежным насосом,
- трубчатые – в конструкции предусмотрены продольно расположенные трубки. КПД трубчатых теплогенераторов кавитации отличается высокими показателями,
- ультразвуковые – эффект кавитации обеспечивается при помощи ультразвуковых волн.
Кавитационный теплогенератор вихревой
КПД ультразвукового оборудования невероятно высок.
Принцип работы роторных генераторов
Пожалуй, к самым продуктивным моделям относится конструкция Григгса, в которой ротор в форме диска располагает поверхностью с многочисленными глухими отверстиями определенного диаметра и глубины. Статор представлен в виде цилиндра с запаянными концами, в котором вращается ротор. Между роторным диском и стенками статора есть зазор величиной около 1,5 мм. В ячейках устройства обеспечивается возникновение завихрений для образования кавитационных полостей. Количество ячеек определяется частотой вращения ротора.
Как отмечают специалисты, для эффективности работы прибора применяется ротор с поперечным размером от 30 см со скоростью вращения 3 000 оборотов/мин. При меньшем диаметре требуется увеличить параметры оборотов.
Особенности роторных теплогенераторов кавитационного действия:
- присутствует значительный уровень шума,
- КПД устройства не впечатляет,
- непродолжительный срок службы,
- показатели производительности на 25% выше, чем у статических моделей.
При эксплуатации роторной установки требуется отработка четкого действия всех элементов, в том числе и балансировка цилиндра. Также необходимо своевременно менять исчерпавшие свой потенциал изоляционные материалы для уплотнения вала.
Принцип работы статического теплогенератора
Кавитация предполагает высокую скорость перемещения рабочей жидкости при помощи мощного мотора центробежного типа. Так как dвыхода сопла значительно меньше, чем параметры противоположного конца, увеличивается скорость перемещения субстанции, и возникают кавитационные эффекты.
Статические кавитаторные приборы располагают массой преимуществ:
- не требуется балансировка и точная подгонка деталей,
- уплотнители изнашиваются меньше, чем в роторной модели, так как здесь отсутствуют подвижные детали,
- продолжительность срока службы статического кавитатора около 5 лет, что значительно больше, чем у предыдущего варианта прибора.
При необходимости производится замена сопла, для чего понадобится относительно небольшой расход времени и сил, тогда как в случае с роторным прибором придется воссоздать его заново, если оборудование выйдет из строя.
Трубчатые тепловые генераторы: устройство и принцип работы
В этой модели кавитационное тепло вырабатывается благодаря продольному расположению трубок:
- помпа способствует нагнетанию давления во входящую камеру, и рабочая субстанция направляется через трубки. При этом на входе образуются пузырьки,
- при попадании во вторую камеру, где установлено высокое давление, пузырьки разрушаются, в процессе образуется тепловой потенциал.
Трубчатый тепловой генератор
Выработанная таким способом энергия направляется вместе с паром на отопление дома. Как утверждают производители трубчатых теплогенераторов кавитации, как и специалисты в сфере климатического оборудования, эта модель отличается высокими показателями КПД.
Особенности ультразвуковых генераторов кавитационного действия
В установке создаются ультразвуковые волны, благодаря которым образуется кавитационное тепло. Для этого применяется кварцевая пластина, на ее основе под воздействием электрического тока создаются звуковые колебания. Они направляются на вход, впоследствии чего образуется вибрация. На обратной фазе звуковых волн возникают участки разряжения и наблюдается эффект кавитации. Принцип работы ультразвукового кавитатора предполагает минимальные потери энергии и практическое отсутствие трения. Всем этим обуславливается исключительно высокий КПД ультразвукового оборудования.
Физические основы
Кавитация – образование пара в массе воды при медленном понижении давления и большой скорости движения.
Пузырьки пара могут возникать под действием звуковой волны определённой частоты или излучением источника когерентного света.
В процессе смешивания паровых пустот с водой под давлением приводит к самопроизвольному схлопыванию пузырьков и возникновению движения воды ударной силы (про расчет гидравлического удара в трубопроводах написано ).
В таких условиях молекулы растворенных газов выделяются в образующиеся полости.
По мере прохождения процесса кавитации, температура внутри пузырьков повышается до 1200 градусов.
Это отрицательно влияет на материалы водяных емкостей, поскольку кислород при таких температурах начинает интенсивно окислять материал.
Опыты показали, что при таких условиях разрушению подвергаются даже сплавы из драгметаллов.
Сделать кавитационный генератор самостоятельно, достаточно просто. Хорошо изученная технология уже несколько лет воплощена в материалы и используется для отопления помещений.
В России, первое устройство было запатентовано в 2013 году.
Генератор представлял собой замкнутую емкость, через которую под давлением подавалась вода. Пузырька пара образовываются под действием переменного электромагнитного поля.
А что вам известно про полипропиленовые трубы для холодного и горячего водоснабжения? В полезной статье прочитайте о том, чем они отличаются, а также про преимущества одних и недостатки других.
Отзывы на моющие средства для посудомоечных машин прочитайте на этой странице.